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Abstract

Time-varying confounding is a common challenge for causal inference in observational studies with time-varying treatments, long
follow-up periods, and participant dropout. Confounder adjustment using traditional approaches can be limited by data sparsity, weight
instability, and computational issues. The Nicotine Dependence in Teens Study is a prospective cohort study, and we used data from 21
data collection cycles carried out from 1999 to 2008 among 1294 students recruited from 10 high schools in Montreal, Quebec, Canada,
including follow-up into adulthood. Our aim in this study was to estimate associations of timing of alcohol initiation and cumulative
duration of alcohol use with depression symptoms in adulthood. Based on the target trials framework, we defined intention-to-treat
and as-treated parameters in a marginal structural model with sex as a potential effect-modifier. We then used the observational data
to emulate the trials. For estimation, we used pooled longitudinal target maximum likelihood estimation, a plug-in estimator with
double-robust and local efficiency properties. We describe strategies for dealing with high-dimensional potential drinking patterns and
practical positivity violations due to a long follow-up time, including modifying the effect of interest by removing sparsely observed
drinking patterns from the loss function and applying longitudinal modified treatment policies to represent the effect of discouraging
drinking.

Introduction
Estimation of the effect of time-varying exposures in obser-
vational studies becomes methodologically challenging in the
presence of time-dependent confounding, requiring statistical
methods beyond the standard approaches.1,2 Robins3 proposed
marginal structural models (MSMs) which model the potential
outcome under an assigned treatment history (or “pattern”).
Hernán and Robins4 proposed the target trials framework
to define causal effects, in particular MSM parameters, by
means of a mapping of the observational analysis onto an
analysis of a hypothetical randomized controlled trial. The
parameters of an MSM can be estimated with inverse probability
of treatment weighting,2 G-computation,5,6 augmented inverse
probability of treatment weighting estimators,7,8 and more
recently longitudinal targeted maximum likelihood estimation
(LTMLE).9–11 LTMLE has the advantage of double-robustness,
meaning that the estimator is consistent if either the models
for treatments (and censoring) or the models for outcomes are
correctly specified. LTMLE can also readily incorporate machine
learning in the process of generating the initial estimates while

providing valid statistical inference,11 thus reducing the chance
of incurring model misspecification bias.

Though LTMLE has been successfully applied in different
contexts,12–16 there exist data sparsity and high-dimensionality
challenges.17,18 One solution to these challenges lies in defining
hypothetical longitudinal interventions that shift an individual’s
propensity score, making that person more or less likely to
be exposed, corresponding to exposure encouragement or
discouragement. The intervention can also be applied conditional
on the observed exposure—for example, only discouraging
exposure for persons who actually were exposed.19,20

In this paper, we demonstrate the application of LTMLE in a
complex substantive application. We consider an observational
cohort study from Montréal, Quebec, Canada, called Nicotine
Dependence in Teens (NDIT).21,22 Associations between alcohol
use in adolescence and later risk-taking behaviors have been
established in longitudinal studies.23,24 Regarding assessment of
the longitudinal effect of alcohol use on depressive symptoms
in early adulthood, to the best of our knowledge, no study has
adjusted for time-varying confounding using causal inference
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methods.25-28 We aim to study the effect of time of alcohol-
drinking initiation and cumulative duration of drinking in
adolescence on depression in young adulthood. We take into
account time-varying confounders that can also be caused by
drinking in adolescence, including depressive symptoms,25,29

smoking,30,31 stress,32,33 and participation in team sports.34,35

We define 2 target trials that recruit adolescents who have not
yet initiated regular drinking. Using working MSMs, we corre-
spondingly define the “intention-to-treat” (ITT) and “as-treated”
(AT) effects, respectively, and investigate effect modification by
sex. The working MSM represents a projection of a true causal
relationship between exposures and the outcome onto a low-
dimensional linear model.36 We then estimate the parameters
of the 2 MSMs using G-computation and LTMLE. We describe
high-dimensionality and sparsity challenges encountered when
estimating the AT effect and explore ways to address them.

Methods
NDIT data
The NDIT Study is a prospective longitudinal investigation of 1294
grade 7 students recruited from 10 Montréal-area high schools in
1999-2000.22 Self-report questionnaires were administered from
grade 7 to grade 11 at each of the 10 schools every 3 months, for a
total of 20 study cycles from 1999 to 2005 (i.e., during the 5 years of
high school). Mail or in-person questionnaires were administered
in 2007/2008 (cycle 21) when participants were aged 20.4 years, on
average. The data collected included repeated measures of a wide
range of sociodemographic, substance use, psychosocial, lifestyle,
and physical and mental health variables. Figure S1 in Appendix
S1 presents the structure of the follow-ups in the NDIT Study.

Parents and legal guardians provided informed consent, and
all students provided assent and then consent in adulthood. The
study was approved by the Ethics Research Committee of the
Centre de Recherche du Centre Hospitalier de l’Université de
Montréal.

Exposure
Participants were asked, “During the past 3 months, how often
did you drink alcohol (beer, wine, hard liquor)?”. We considered
a participant exposed to regular alcohol use if the participant
answered “once or a couple of times a week” or “usually every
day” (alternatives were “never,” “a bit to try,” or “once or a couple
of times a month”). Therefore, “alcohol use” in this paper refers
to “at least weekly use.” In defining the population of interest, we
excluded all participants reporting regular alcohol use at time 0.
We then defined exposure initiation as the time when participants
first became exposed. We correspondingly denoted the binary
exposure over time as At, t ∈ (0, · · · , 19), with At = 1 representing
exposed and At = 0 representing unexposed.

Censoring
We denoted the censoring indicators as Ct, t ∈ (1, · · · , 20). A
participant was censored by time t, denoted Ct = 1, when they
were lost to follow-up or when they skipped more than 1 entire
year of follow-up; otherwise, Ct = 0.

Covariates
Baseline covariates. As baseline variables, we included socio-

demographic characteristics, including sex, school indicator,
mother’s education, whether the participant lived in a single-
parent home, whether the participant spoke French at home, and
country of birth, which were assessed in the first data collection

cycle. In addition, we also included as baseline covariates self-
esteem, impulsivity, and novelty-seeking, measured in the 12th
study cycle (April 2002 for grade 9 students; average age = 15
years), since they were considered personal traits and unlikely to
vary considerably over time. We denoted the baseline variables
as W.

Time-varying covariates. The time-varying covariates Lt, t ∈
(1, · · · , 20) were measured between exposures At and A(t+1) and
included current depressive symptoms, participation in team
sports, family-related stress (on a validated 4-point scale, with
higher values indicating more stress), other types of stress
(validated 4-point scale), worry about weight, and ever having
smoked.

Detailed information on all covariates is given in Appendix S2.

Outcomes
The outcome Y, depression symptoms, was measured using
the Major Depression Inventory (MDI) in 2007/2008. This scale
measures depression symptoms over the past 2 weeks with a
score range of 0-50, where greater values indicate more severe
symptoms.37,38 A detailed list of items included in the MDI is
presented in Appendix S3.

Data structure
Given the above, the following represents the observed data
structure:

O = {W, L1, A1, L2, C2, A2 · · · , L19, C19, A19, L20, C20, Y} .

Definition of target parameter
Target trial
We define 2 target trials, with corresponding ITT and AT param-
eters of interest. Both trials recruit participants who had not
initiated regular alcohol drinking at the beginning of grade 7.
The first target trial randomizes drinking initiation to one of the
first 19 follow-up time points. The second target trial randomizes
drinking (yes/no) at each of the 19 time points during follow-up.
The depression score outcome is measured at the follow-up time
in adulthood. The parameters of interest are the coefficients of
a linear regression conditional on sex, drinking assignment, and
their interaction.

Parameter of interest
In the observational study, we characterize counterfactuals under
the different types of hypothetical interventions. In the ITT trial,
the intervention is initiation time, where the analysis ignores
changes in subsequent alcohol use. This leads to 20 possible
patterns, denoted a, that can be represented by vectors of length
19 of zeros followed by ones. For example, a vector of 19 zeros
represents never initiating alcohol use; the vector (0, 1, . . . , 1)

represents initiation at the second time point. In contrast, the
AT study randomizes drinking at each time, so that a pattern a,
any vector of length 19 of zeros and ones, is assigned to each
participant. Therefore, the AT study has 219 potential treatment
patterns. We define a specific treatment pattern ad, for ad ∈ D,
where D is the set of all possible patterns in either the ITT trial or
the AT trial.

Define Y
(
ad) as the counterfactual outcome that would have

been observed under some treatment pattern ad = (
ad

1, · · · , ad
19

)
.

Because of a lack of data support for specific drinking initiation
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times or patterns over the 19 time points, it was deemed infeasible
to contrast mean counterfactual outcomes under specific trajec-
tories. Thus, the parameters of interest are defined through work-
ing MSMs to summarize how the mean counterfactual outcome
varies as a function of different interventions, and the baseline
covariate sex.

The working MSM is

E[Y
(
ad)|sex] = m

(
sex, ad; βd) = βd

0 + βd
1sex + βd

2cum
(
ad)

+ βd
3

{
sex × cum

(
ad)}, (1)

where cum
(
ad) counts the number of exposed time points in

the pattern and E [Y (· ) |sex] represents the mean counterfactual
outcome under some intervention, in a sex subgroup such that
sex = 1 denotes female. The true parameter values βd minimize
the expectation of a squared error loss function, summing over
all patterns in either the ITT or AT space (see Appendix S4),
corresponding to the parameters estimated in the hypothetical
target trials. Equation (1) thus contrasts the counterfactual mean
depression scores given different alcohol initiation times or cumu-
lative usage. Thus, we model the average counterfactual outcome
under any drinking initiation time (ITT) or one of the 219 drinking
patterns (AT) in order to contrast how the expected outcome
differs under one additional time point of drinking.

These parameters are estimable under the assumptions
defined in Appendix S5. In particular, the positivity assumption
requires that at every time point, all individuals must have a
positive probability of initiating drinking (ITT) or continuing to
follow any drinking pattern (AT). Even if theoretically satisfied, if
these probabilities are estimated to be close to 0, this amounts
to practical positivity violations (or sparsity) and the estimation
relies on extrapolation or smoothing across covariate strata.39

Estimation Methods
In the application of the causal inference methods to obtain point
estimates of the parameters of interest, we assumed indepen-
dence between study participants. However, the variance estima-
tion adjusted for clustering by school.12 Our handling of baseline
and time-varying covariate missingness involved multiple impu-
tation by chained equations (see Appendix S2). We imputed 10
databases and then averaged the point estimates and computed
the SEs using Rubin’s rules.

Sequential G-computation
We use the notation Lt to denote the history of time-dependent
covariates up to time t, and likewise At represents the history of
the exposure A1, · · · , At. Define Qt

(
ad) as the mean counterfactual

outcome at time t ∈ (21, · · · , 1) had past exposures been set
to ad

t , given the covariate history. Note that the coefficients in
equation (1) correspond to a regression of Q1

(
ad) on sex and

the respective summary of exposure according to the MSM form
under the loss function in Appendix S4. To apply G-computation,
we first rescaled the continuous outcome Y to (0, 1) and defined
Q21

(
ad) = Y. Then sequentially, for each time t, we fitted logistic

regressions conditioning on exposure and covariate history using
uncensored participants (Appendix S6). Finally, for each pattern
ad belonging to the ITT or AT regimen space, we obtained esti-
mates of Q1

(
ad) for all participants by predicting from the model

fit under the imputed exposure pattern. We then stacked the
vectors Q1

(
ad) for each pattern ad and regressed this vector on

baseline covariates and summaries of regular drinking exposure

using linear regression according to the MSM. SEs were then esti-
mated by clustered bootstrap with 150 resamples.5,12 The detailed
algorithm of sequential G-computation is given in Table S1 in
Appendix S7.

Longitudinal targeted maximum likelihood estimation
LTMLE requires estimates of conditional probabilities of treat-
ment and censoring to update the initial estimates of each Qt

(
ad)

with the objective of satisfying the efficient influence function
estimating equation.40 This results in double-robustness and
asymptotic local efficiency.41 First we used logistic regression
models to estimate the censoring and treatment probabilities
stratified by time conditional on the baseline and recent
time-varying covariates, and lagged exposure for uncensored
participants (Appendix S6). We defined wd

t as the cumulative
weight, which is the cumulative product of the inverse of
treatment and censoring probabilities from time 1 to time t under
the treatment pattern ad. We used stabilized weights (Appendix
S8), which result in a weaker positivity assumption.39 Because we
observed practical positivity violations in the AT analysis, we also
used post-hoc weight truncation. SEs were estimated based on
the influence function.

LTMLE allows for the integration of machine learning to
increase the chances of consistent estimation under regularity
conditions.10 Super Learner (SL) is a method that uses V-fold
cross-validation to find an optimal convex combination of the
predictions of a library of candidate algorithms defined by the
user.42 We therefore used SL to estimate the Qt

(
ad)’s and the

exposure and censoring probabilities. Each SL library contained
the mean (SL.mean), multivariate adaptive regression splines
(SL.earth), generalized additive models (SL.gam), generalized
linear models (GLMs) (SL.glm), and the least absolute shrinkage
and selection operator (LASSO) (SL.glmnet). We used the default
hyperparameters but customized these functions (aside from the
mean) by adding terms for interaction between treatment and sex
in the SL wrappers. We present the pooled LTMLE algorithm for
estimating the parameters of an MSM11 in Table 1. The subscript
n is used to denote an estimate of a quantity.

Since we hand-coded the pooled LTMLE algorithm for the
clustered setting,12 we verified its correctness using 2 simulations
with 2 time points and clustered observations and estimated ITT
and AT parameters, described in Appendix S9. We simulated 500
data sets where we generated 5000 participants in 50 clusters,
with random intercepts in the outcome model. We verified the
unbiasedness of the LTMLE and also compared SE estimators
assuming independence and clustering (respectively) using the
influence function–based sandwich estimator and clustered boot-
strap, respectively, showing that the clustered versions are needed
under random effects. The full data-generation is shown and
results are given in Tables S2 and S3, respectively, in Appendix S9.

Challenges and strategies due to high-dimensionality and
sparsity in the AT analysis
The main challenges in the AT analysis involved computational
issues introduced by the very large number of potential treatment
patterns. Recall that we have |D| = 219 = 524 288 potential
treatment patterns, which would thereby produce several very
large stacked vectors and matrices when we perform the pooled
TMLE procedure. The vectors are of length |D| × n = 219 × 1231 =
645 398 528 for each time t in the update step (steps 3.2-3.4 of the
pooled LTMLE algorithm in Table 1). However, objects of this size
cannot be stored in the R memory or be easily manipulated in R.
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Table 1. Pooled longitudinal targeted maximum likelihood estimation algorithm.a

Step Pooled LTMLE algorithm for both ITT and AT

1 Estimate every component of wd
t for t = 1, · · · , 20 to obtain the estimated weights wd

t,n for each treatment pattern ad that belongs to
the ITT or AT regimen space D.

2 Define Q
d∗
21,n = Y, where Y is rescaled to (0, 1).

3 Then, iteratively for t = 20, · · · , 1:

3.1 Initial estimate of Q
d
t,n: With uncensored participants, regress Q

d∗
t+1,n on the treatment and covariate history. When t = 20, predict

outcomes by setting A19 = ad
19; otherwise predict while setting At = ad

t for each treatment pattern and each subject. Define

Q
d
t,n as the stacked vector of predictions with length n× | D |.

3.2 Construct a covariate matrix for each subject and each treatment pattern ad, ht
(
ad, sex

) = 1
(
At = ad

t , Ct = 0
) × [∂m

(
β, sex, ad)

/∂β],
where ∂m

(
β, sex, ad)

/∂β in our example equals 1, sex, cum
(
ad

t
)
, sex × cum

(
ad

t
)
. For a treatment pattern ad, the dimension of

ht
(
ad, sex

)
is the same as the dimension of β. Thus, for all possible patterns, the ht

(
ad, sex

)
is of dimension (n × |D|) × 4.

3.3 Update Q
d
t,n to Q

d∗
t,n by fitting an intercept-free weighted pooled logistic regression of Q

d∗
t+1,n on the covariate matrix produced from

the previous step with offset logit(Q
d
t,n) and wd

t,n as weights for each ad, logit
(
Q

d∗
t,n

) = logit
(
Q

d
t,n

) + εht
(
ad, sex

)
.

3.4 Generate Q
d∗
t,n by making predictions for every subject under each pattern ad using the logistic model fitted in step 3.3. Q

d∗
t,n is the

stacked vector of updated predictions and has length n× | D |.
4 Rescale Q

d∗
1,n (length n× | D |) to the original scaling of Y.

5 The coefficients are estimated by fitting a pooled linear regression of Q
d∗
1,n on stacked covariates and all treatment patterns D, in

the ITT or AT space, corresponding to the MSM in equation (1).

Abbreviations: AT, as-treated; ITT, intention-to-treat; LTMLE, longitudinal targeted maximum likelihood estimation; MSM, marginal structural model.
aVariables: wd

t,n, the estimate of cumulative weight up to time t under treatment pattern ad; Q
d
t,n, the estimate of the mean counterfactual outcome at time t

had past exposures been set to ad; Q
d∗
t,n, the updated estimate of the mean counterfactual outcome; D, the ITT or AT regimen space; ε, a vector parameter.

The parameters of interest are defined in terms of the mini-
mization of an expected squared error loss function calculated
over all 219 patterns (see Appendix S4). However, in order to tackle
this issue, we propose a pragmatic strategy that redefines the
parameters of interest by minimizing this expected loss over the
patterns that are most supported by the data. Let Dt be the set
of patterns that were supported by data, that is, observed to be
followed by at least 1 individual up to time t, for each time t =
1, · · · , 19. Table S4 in Appendix S10 gives the cardinality (size) of
Dt at each time point. To test sensitivity, we performed the analy-
sis involving all supported patterns up to times 19, 18, 17, and 16,
such that |Dt| = 227, 494, 936, and 1688 patterns were included,
respectively. On our local computer, we could not realistically
go further than t = 16 for the LTMLE analysis with GLMs. We
focused on D17 (936 patterns), since this was the largest number of
patterns that could be incorporated in the LTMLE analysis with SL.

Longitudinal modified treatment policies
Inspired by the hypothetical interventions based on the natural
value of treatment first discussed by Robins et al.43 and then
formalized by other researchers,44,45 Díaz et al.20 proposed lon-
gitudinal modified treatment policies (LMTPs). An LMTP involves
a hypothetical intervention at each time point which can be
expressed as a deterministic or random function of the observed
treatment and the unit’s covariate history. In this paper, we apply
an incremental propensity score intervention based on the risk
ratio scale46,47 that shifts the propensity scores to discourage
alcohol use. Specifically, the intervention assigns a new exposure
the likelihood of which can be determined hypothetically by
the user-defined risk ratio value. Under this intervention, effects
can be identified and estimated under weak conditions on the
propensity score46; consequentially, sparsity does not destabilize
the analysis as much. We used the “lmtp” R package20,48 (also
available from the Comprehensive R Archive Network (https://
cran.r-project.org/)), which implements LTMLE for LMTP while
simultaneously adjusting for censoring. We chose 5 risk ratios for
alcohol use [0.1, 0.3, 0.5, 0.7, 0.9] and then estimated the mean MDI
score according to sex and compared the mean MDI scores under

risk ratios [0.1, 0.5, 0.9] with the mean MDI score without any
intervention. We applied the same SL algorithms as in the section
"Longitudinal targeted maximum likelihood estimation." Further
details are given in Appendix S11.

Results
The data set included 1294 participants. We excluded participants
who only completed the first follow-up cycle, skipped the first
year of the study, or reported alcohol consumption at baseline,
leaving 1231 participants in the analysis (Figure S2 in Appendix
S10). Baseline and time-varying characteristics of the 1231 par-
ticipants are presented in Table 2. There was missingness in the
baseline covariates. Table 3 shows the cumulative numbers and
percentages of censored persons, initiators, and actual exposed
participants at each time point (study cycle). Note that at t = 1,
there was no censoring due to the exclusion criteria.

ITT analysis
The range of the cumulative stabilized weights was 0.22-72.38,
with a mean of 1.02, so no truncation was applied. In Figure 1
and Table S5 in Appendix S10, female sex was associated with
more severe depressive symptoms in all estimates. LTMLE-GLM
suggested a stronger sex association than G-computation (4.5
[95% CI, 3.4-5.7] vs 3.5 [95% CI, 2.2-4.9]). In addition, LTMLE using
a GLM and SL indicated that each unit of earlier alcohol initiation
increased the expected depression symptoms score in adulthood
among males by approximately 0.05 (GLM: 0.05 [95% CI, 0.0-0.1];
SL: 0.03 [95% CI, 0.0-0.1]) and decreased depression symptoms
score in females by approximately 0.14 (GLM: −0.14 [95% CI,
−0.2 to −0.1]; SL: −0.13 [95% CI, −0.2 to −0.1]). G-computation
estimated no statistically significant association between alcohol
initiation and depression; comparatively, LTMLE had a similar
point estimate but a lower SE.

AT analysis
We performed the AT analysis with 227, 494, 936, and 1688
patterns, respectively, where the models in the pooled LTMLE
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Table 2. Baseline characteristics and time-varying covariates of 1231 participants in the analytical sample at time t = 1, Nicotine
Dependence in Teens Study, 1999-2008.

Variable Classification
No. of participants %

Median (IQR)
No. with
missing dataCategory 1 Category 2 Category 1 Category 2

Baseline
Sex Female vs male 644 587 52.3 47.7
Single-parent family Yes vs no 148 1083 12.0 88.0
French-speaking home Yes vs no 368 863 29.9 70.1
Country of birth In Canada vs outside

Canada
1132 99 92.0 8.0

Mother’s education Less than university vs
some university

523 419 55.5 44.5 289

Self-esteema Numerical 2.7 (2.2-2.9) 276
Impulsivitya Numerical 2.1 (1.6-2.9) 326
Novelty-seekinga Numerical 2.9 (2.3-3.4) 324

L1

Weight worry Yes vs no 427 736 36.7 63.3 68
Sports participation Yes vs no 750 437 63.2 36.8 44
Ever smoking Yes vs no 365 862 29.7 70.3 4
Current depressive symptoms Numerical 2.0 (1.7-2.5) 55
Family stress Numerical 1.2 (1.0-1.4) 59
Other stress Numerical 1.4 (1.2-1.6) 52

Abbreviation: IQR, interquartile range.
aThese 3 covariates, considered time-invariant, were measured in study cycle 12.

procedure were fitted using GLMs. To evaluate the sensitivity
to weight truncation, we set fixed bounds at 1000, 5000, and
10 000 on the cumulative stabilized weights. These values
were determined a posteriori based on the observed weight
distribution. Table 4 shows the median values and interquartile
ranges of the cumulative stabilized weights and the percentages
of truncated cumulative weights. The bounding affected 7%-12%
of participants.

Figure 2 and Table S6 in Appendix S10 show the estimated
coefficients using LTMLE with GLM at 3 levels of truncation.
The estimated counterfactual mean of MDI score in females was
around 5 points higher than in males and was stable over different
numbers of patterns. A single added time period of drinking in
adolescence was also associated with increased depression levels
in adulthood, but the estimate waned with greater numbers of
patterns and less restrictive bounds. For instance, when bounding

Table 3. Numbers of censoring and exposure events occurring at 20 follow-up time points, Nicotine Dependence in Teens Study,
1999-2008.

Data collection
cycle

Censoring Alcohol use

No. of censored
participants

Cumulative
no. of censored
participants

Cumulative
% of censored
participants

Cumulative no.
with drinking
initiation

Cumulative %
with drinking
initiation

No. of
exposed
participants

% of
participants
exposed

0 0 0 0 0
1 0 0 0.0 30 2.4 30 2.4
2 9 9 0.7 56 4.5 40 3.2
3 20 29 2.4 68 5.5 43 3.5
4 85 114 9.3 101 8.2 60 4.9
5 7 121 9.8 151 12.3 100 8.1
6 5 126 10.2 188 15.3 111 9.0
7 10 136 11.0 210 17.1 103 8.4
8 81 217 17.6 233 18.9 116 9.4
9 10 227 18.4 257 20.9 113 9.2

10 2 229 18.6 276 22.4 113 9.2
11 7 236 19.2 284 23.1 104 8.4
12 87 323 26.2 289 23.5 119 9.7
13 8 331 26.9 317 25.8 136 11.0
14 2 333 27.1 340 27.6 124 10.1
15 3 336 27.3 358 29.1 134 10.9
16 39 375 30.5 377 30.6 170 13.8
17 2 377 30.6 394 32.0 171 13.9
18 5 382 31.0 411 33.4 167 13.6
19 7 389 31.6 425 34.5 184 14.9
20 169 558 45.3 425 34.5
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Figure 1. Intercept and coefficient estimates from longitudinal targeted maximum likelihood estimation (LTMLE) fitted with generalized linear models
(GLMs; blue) and Super Learner (SL; pink), respectively, and G-computation (G-comp; green) in the intention-to-treat analysis, Nicotine Dependence in
Teens Study, 1999-2008. A) Intercept; B) coefficient of sex; C) coefficient of initiation time; D) coefficient of the interaction between sex and initiation
time. The y-axis represents the Major Depression Inventory (MDI) score. The intercept represents the average MDI score for males in the absence of
drinking initiation; the coefficient of sex represents the average increment of MDI score for females compared with males in the absence of drinking
initiation; the coefficient of initiation time represents the average increment of MDI score for males for a 1-time-point earlier initiation time; and the
coefficient of the interaction between sex and initiation time represents the average increment of MDI score for females for a 1-time-point earlier
initiation time. The reference sex was male. Bars show 95% confidence intervals.

by 10 000, the cumulative exposure coefficient estimate gradually
decreased from 1.0 (227 patterns) to 0.60 (1688 patterns). The
point estimates of the interaction term were stable with different
numbers of treatment patterns but increased with less restrictive
weights (from 0.13 under 227 patterns to 0.39 under 1688 pat-
terns); the CI widths also increased with less. SEs decreased as

more patterns were included, a result of more data support for
the MSM parameters under the loss function.

To better understand the impact of the weights, we compared
the LTMLE results with GLM and SL, respectively, with the para-
metric sequential G-computation estimator (Figure 3 and Table
S7 in Appendix S10) using 936 patterns. TMLE with SL produced

Table 4. Median values of the cumulative stabilized weights and percentage of truncated cumulative
weights with generalized linear models for 227, 494, 936 and 1688 patterns, Nicotine Dependence in Teens
Study, 1999-2008.

No. of patterns Median CSW (IQR)
% of truncated cumulative stabilized weights

1000 bound 5000 bound 10 000 bound

227 1.45 (0.91-18.50) 0.11 0.08 0.07
494 1.70 (0.93-23.64) 0.11 0.08 0.07
936 1.87 (0.94-27.21) 0.11 0.08 0.07

1688 2.09 (0.95-32.94) 0.12 0.08 0.07

Abbreviations: CSW, cumulative stabilized weight; IQR, interquartile range.
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Figure 2. Intercept and coefficient estimates from longitudinal targeted maximum likelihood estimation with a generalized linear model in the
as-treated analysis including 227, 494, 936, and 1688 patterns under bounds of 1000 (– – –; gold), 5000 (—; blue), and 10 000 (– - –; pink) on the
cumulative stabilized weights, Nicotine Dependence in Teens Study, 1999-2008. A) Intercept; B) coefficient of sex; C) coefficient of cumulative alcohol
use (CumA); D) coefficient of the interaction between sex and CumA. The y-axis represents the Major Depression Inventory (MDI) score. The intercept
represents the average MDI score for males in the absence of drinking; the coefficient of sex represents the average increment of MDI score for
females compared with males in the absence of drinking; the coefficient of CumA represents the average increment of MDI score for males for 1
additional time period of drinking; and the coefficient of the interaction between sex and CumA represents the average increment of MDI score for
females for 1 additional time period of drinking. The reference sex was male. Bars show 95% confidence intervals.

smaller effects of sex than TMLE with GLM under all 3 bounds.
G-computation produced much narrower CIs that contained the
null value for both the main effect of cumulative duration (0.03;
95% CI, −0.10 to 0.17) and the interaction term (−0.14; 95% CI,
−0.34 to 0.07). The weights had an important impact on the
point estimate for the coefficient of cumulative exposure, with
LTMLE suggesting an association when using GLM but not with
SL. Only LTMLE with SL under the 10 000 bound indicated that sex
modified the effect of cumulative exposure (1.72; 95% CI,
0.44-3.00).

LMTP estimates
Using LTMLE, we estimated mean MDI scores and 95% CIs in males
and females separately under 5 hypothetical LMTP interventions
in which the propensity scores were shifted to discourage alcohol
use at each time point and under no intervention (ie, no shift
for the propensity score) (Table S8 in Appendix S11). For both
males and females, comparisons of expected outcomes under
each LMTP intervention and no intervention did not suggest an
impact (Table S9).

Discussion
Our study demonstrates how to apply target trials and modi-
fied treatment policies to define causal effects in a challenging
longitudinal problem, using LTMLE for estimation. Our analysis
involved detailed information on alcohol initiation and use in
adolescents and depression in adulthood, with 21 follow-up time
points, censoring, and many baseline and time-dependent con-
founders. Analytical challenges in the AT analysis included highly
variable weights induced by data sparsity17 and high-dimensional
potential exposure patterns. To tackle these challenges, we used
2 approaches to modify the target parameter: (1) an ad hoc
approach to remove patterns with less data support from the loss
function and (2) defining longitudinal interventions shifting the
propensity scores to discourage drinking.

Our LTMLE with GLM and SL analyses suggested that earlier
initiation of alcohol drinking was associated with increased
depression in males and reduced symptoms in females. LTMLE
with GLM also indicated that cumulative duration of drinking
was associated with increased depression similarly in males and
females; LTMLE with SL had similar point estimates but wider CIs
that included the null. Further, this AT analysis was hampered
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Figure 3. Intercept and coefficient estimates from longitudinal targeted maximum likelihood estimation (LTMLE) with generalized linear models
(GLMs) and Super Learner (SL) in the as-treated analysis including 936 patterns under bounds of 1000 (– – –; gold), 5000 (—; blue), and 10 000 (– - –;
pink) on the cumulative stabilized weights, Nicotine Dependence in Teens Study, 1999-2008. A) Intercept; B) coefficient of sex; C) coefficient of
cumulative alcohol use (CumA); D) coefficient of the interaction between sex and CumA. The y-axis represents the Major Depression Inventory (MDI)
score. The intercept represents the average MDI score for males in the absence of drinking; the coefficient of sex represents the average increment of
MDI score for females compared with males in the absence of drinking; the coefficient of CumA represents the average increment of MDI score for
males for 1 additional time period of drinking; and the coefficient of the interaction between sex and CumA represents the average increment of MDI
score for females for 1 additional time period of drinking. The reference sex was male. Bounding of weights for G-computation (G-comp; green) was
not applicable (N/A). Bars show 95% confidence intervals.

by sparsity and was sometimes sensitive to the weight bounds,
though less sensitive to the number of patterns included in
the loss function. For better insight, we employed sequential
G-computation, which uses the same estimation procedure as
LTMLE without the weighting component, and noted sometimes
important differences in the point estimates. Because LTMLE is
doubly robust, influential weights suggest misspecified models
for the outcome—this is because if the outcome models were
correctly specified, the weights would not be informative for the
outcome residuals and so the update step would not modify
the estimation. While we stratified treatment and censoring
models by time point, model-smoothing over time points may
provide more weight stability at the risk of increased bias.18

However, it is not clear to what point the instability of the weights
inserted bias into the analysis, and thus we found that it was
not possible to draw a strong conclusion from the analysis of the
(weakly identified) AT MSM parameters. This is why we defined
and estimated a causal parameter under an LMTP intervention
discouraging alcohol use to various degrees, which was robust

to the previous sparsity issues. From this analysis, we did not
conclude that such an intervention would have an effect. Similar
LMTP parameters have been proposed elsewhere.19

Our truncation levels were determined a posteriori. Indeed,
truncation levels are often chosen based on ad hoc criteria in prac-
tice. In a recent paper, Gruber et al.49 suggested a

√
n ln(n)/5 upper

bound in the average treatment effect setting. Ju et al.50 proposed
collaborative TMLE for adaptive propensity score truncation, and
one of us (M.E.S.) developed collaborative TMLE in the longitudinal
setting51 that could potentially be applied for adaptive propensity
score truncation. Other perspectives and approaches have also
been described.39,52,53

Limitations of our analysis included the interference assump-
tion’s probably being violated to some extent (eg, within school
classes), since drinking behavior is transmissible in adolescents,
as perceived peer norms have a direct effect on alcohol use.54

Second, though we adjusted for many relevant confounders,
the “no unmeasured confounders” assumption was probably
unmet, since we did not have a complete profile on personal
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circumstances that would affect the timing of drinking in
adolescence and depression in adulthood. Third, due to the
limited computational ability of our local computers, we included
at most 1688 treatment patterns in the AT analysis which changed
the parameter of interest, potentially leading to bias. Finally, our
MSMs may have smoothed incorrectly over the effects of drinking
exposure if the effects varied by time point. If so, this would have
resulted in less interpretable coefficients, though the estimation
and inference would remain valid for these parameters.36

Our study contributes to a growing body of literature on the
application of robust longitudinal causal inference methods.
While these methods have many important theoretical properties,
data sparsity is a common challenge. We thus encourage
epidemiologists and applied statisticians to explore recently
proposed parameter definitions and estimation methods that
weaken positivity assumptions, leading to more robust results.
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