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Canada, 4 Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry,

Western University, London, Ontario, Canada

* marie-pierre.sylvestre@umontreal.ca

Abstract

Using a genetic risk score (GRS) to predict a phenotype in a target sample can be compli-

cated by missing data on the single nucleotide polymorphisms (SNPs) that comprise the

GRS. This is usually addressed by imputation, omission of the SNPs or by replacing the

missing SNPs with proxy SNPs. To assess the impact of the omission and proxy ap-

proaches on effect size estimation and predictive ability of weighted and unweighted GRS

with small numbers of SNPs, we simulated a dichotomous phenotype conditional on real

genotype data. We considered scenarios in which the proportion of missing SNPs ranged

from 20–70%. We assessed the impact of omitting or replacing missing SNPs on the associ-

ation between the GRS and phenotype, the corresponding statistical power and the area

under the receiver operating curve. Omission resulted in a larger bias towards the null value

of the effect size, a smaller predictive ability and greater loss of statistical power than proxy

approaches. The predictive ability of a weighted GRS that includes SNPs with large weights

depends of the availability of these large-weight SNPs.

Introduction

The potential to understand the genetic underpinnings of complex diseases has been extended

considerably with the advent of the human genome project [1]. However, the effect of one sin-

gle-nucleotide polymorphism (SNP) on a complex phenotype is typically small, explaining

only a small proportion of the variability in the phenotype. Since Purcell and al. reported that

combining “risk alleles” of selected SNPs into an “aggregate risk score” predicted schizophre-

nia and bipolar disorder [2], there has been growing interest in what is now referred to as

Genetic Risk Scores (GRS) [3–6] for a variety of different phenotypes.

GRS are usually created in a discovery sample and analysed in a target sample. First, SNPs

are selected based on their nominal P-value for a specific phenotype observed in a genome-

wide association study (GWAS) as a discovery sample. The GRS is then computed as the

weighted sum of the risk alleles of selected SNPs, where weights are defined by the marginal

effect size of each SNP. Second, the association between this GRS and the phenotype is studied
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in another sample, called the target sample. When weights are similar, a weighted GRS with all

weights set to one is equivalent to an unweighted GRS with a simple count of risk alleles [7].

Two approaches are commonly used to choose SNPs in a GRS. The first selects only SNPs

significant at a GWAS level (P-value < 5x10-8) in the literature or in a discovery dataset. The

resulting GRS is based on a relatively small number of SNPs (often < 100). This approach usu-

ally provides information on the precise genetic and biological mechanisms underpinning the

phenotype but at the expense of lower predictive ability [8]. The second approach aims to max-

imize the predictive ability of the GRS, and selects hundreds of SNPs using a liberal P-value

threshold such as 0.001 [4, 9, 10]. This approach may require both discovery and target sam-

ples in hand if the discovery GWAS did not include reports of all SNPs under a 0.001

threshold.

SNPs selected in the discovery sample may not all be available in the target dataset (e.g.,

when the discovery sample is drawn from the literature, when the datasets were genotyped

with different technologies, or when the SNP call rate was too low in the target dataset [11]).

Approaches to deal with this issue include omitting the SNP in the GRS computation [12],

replacing it with a proxy SNP that is available in the dataset [13] or imputing unavailable SNPs

[14] using stand alone software (e.g., IMPUTE [15], minimac [16], BEAGLE [17]) or software

available through a public server (https://imputationserver.sph.umich.edu) [18]. For each

approach, imputation quality can be measured using the expected value of the squared Pearson

correlation coefficient (r2) between the true and estimated allele counts. The r2 coefficient is

estimated by the ratio of the observed variance of the allele count after imputation and the

expected variance based on a binomial distribution under Hardy-Weinberg equilibrium

(HWE) [18].

Proxy SNPs are usually selected among nearby SNPs determined to be in linkage disequilib-

rium (LD) with the unavailable SNP, using a reference panel of similar ethnicity [13, 19]. As in

imputation, the quality of a proxy SNP can be measured by the r2 between the unavailable SNP

and the proxy SNP from the reference data panel. Under the assumption of no population

sub-stratification and HWE, the proxy r2 corresponds to the expected value of r2 between the

true and the estimated allele counts in the target sample. Proxy SNPs can easily be found with

web-based applications such as SNAP [20] or LDlink [21].

Depending on the sample size, genetic imputation can be an efficient method for replacing

a large number of missing SNP values [4]. However, for a GRS based on a limited number of

SNPs, or when only a few SNPs are missing, several authors have used the proxy approach

because of its simplicity and rapidity [6, 13, 19, 22, 23]. Regardless of method, however, there

will be SNPs for which imputation is either not feasible or of poor quality, or SNPs for which

no proxy is available, leading to omission of the unavailable SNPs in the GRS. Goldstein et al.

investigated the impact of omitting imputed SNPs on the predictive ability of a large GRS for a

binary phenotype according to different imputation quality thresholds [4]. The predictive abil-

ity of the GRS was not affected by omission of SNPs with poorer quality imputation. However,

a small decrease in effect size was observed in an extreme case in which SNPs were restricted

to those with an imputation quality of r2 > 0.9 (i.e., 2332 of 7387 SNPs were omitted) [4].

While omission and proxy approaches are routinely used in smaller GRS, their impact on

GRS performance has not been systematically investigated. In this article, we use statistical

simulations to compare the impact of omission versus proxy approaches on the estimated

association between weighted and unweighted GRS based on a limited number of SNPs and a

binary phenotype. We also investigated the impact on the predictive ability of the GRS. We

used a published GRS for coronary heart disease (CHD) [6] as a template to simulate plausible

scenarios for a weighted GRS in which data on more than one SNP are missing and in which

the quality of the proxy SNPs varies.
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Methods

A statistical simulation study using real genotype data was conducted to assess and compare

the impact of omitting unavailable SNPs or using proxy SNPs, on GRS performance. The sim-

ulation study with 10 000 iterations involved four steps:

Simulation

Data generation. We used genetic data from the 404 participants in the Northern Euro-

pean panel of the 1000 Genomes project (without the CEU sub-population) to represent genetic

data with a common LD structure [24]. The CEU sub-population was set aside as an indepen-

dent reference panel for the proxy approach. For simplicity, we restricted the pool of SNPs to

the region 1 to 6-Mb aligned to the ‘+’ strand from chromosomes 1 to 10 with a minor allele fre-

quency (MAF)� 5% in HWE. An offset of 1-Mb prevents an edge effect in the proxy SNP

search. To avoid using SNPs for which no proxies were available, we further restricted the pool

to SNPs for which data on: (i) an excellent proxy (r2� 0.9); (ii) a very good proxy (0.8� r2 <

0.9); and (iii) a good proxy (0.6� r2 < 0.8) were available in the CEU sub-population. The

number of SNPs retained for simulation ranged from 2236 to 7140 for chromosomes 1 to 10.

A binary phenotype was simulated from 50 SNPs (50 corresponds to the number of SNPs

in the GRS in the CHD example) [6]. We randomly selected five SNPs that were not in LD per

chromosome, assuming a causal genetic model. Let Yj represent the phenotype status of partic-

ipant j (Yj = 0 or 1). Let Xij = 0, 1, 2 represent the number of risk alleles of participant j for SNP

i. The vector of causal SNPs for participant j is Xj = (X1j,X1j,. . .,X10j)
T. The disease risk (over a

risk period) corresponding to a weighted GRS for participant j is given by:

logit½PðYjjXjÞ� ¼ mþ
P50

i¼1
biXij ð1Þ

where the weight βi is the log odds ratio (OR) for a one-risk-allele increase in SNP i. We con-

sidered both weighted and unweighted GRS. Assuming the effect sizes of the SNPs are similar,

an unweighted GRS can be used in which βi = β, leading to

logit½PðYjjXjÞ� ¼ mþ b�
P50

i¼1
Xij ð2Þ

Unweighted GRS is thus a count of the number of risk alleles (
P50

i¼1
Xij) and β corresponds

to the log OR for an increase of one risk allele.

In simulations corresponding to a causal unweighted GRS model, we considered scenarios

in which common weights were set at values corresponding to the log OR, ranging from 1.05

to 1.1. Simulations corresponding to a causal weighted GRS used 50 weights corresponding to

those reported for the GRS for CHD [6]. These weights corresponded to a median OR of 1.07

with an interquartile range of 0.4. Weights included three extreme weights for which the ORs

(1.51, 1.45 and 1.29, respectively) were more than 1.5 interquartile range above the third quar-

tile of the OR distribution. These extreme weights allowed us to study the impact of unavail-

able SNPs when contributions to the GRS were much larger than other SNPs.

The constant μ in Eqs (1) and (2) defines the disease risk in the absence of risk alleles,

which corresponds to exp(μ)/[1 + exp(μ)]. For a specific set of weights, the μ parameter was set

using preliminary simulations to ensure a marginal relative frequency of Y = 1 of approxi-

mately 50%. The predicted risk based on this genetic risk model pj was calculated for each

participant with the inverse logit function. The simulated phenotype for participant j was

obtained by random generation of a Bernoulli distribution with probability pj.
Missing data generation. To reflect plausible scenarios with missing data on SNPs [6, 25,

26], we randomly set 20%, 30%, 50% or 70% of SNPs as missing.
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GRS construction. Four alternate GRS were computed in each scenario: (i) GRS omission
refers to the GRS computed with available SNPs only; (ii) GRS with excellent proxy SNPs refers

to the GRS computed by replacing missing SNPs with proxy SNPs of excellent quality; (iii)

GRS with very good proxy SNPs; and (iv) GRS good proxy SNPs refers to GRS computed in the

same way but with proxy SNPs of very good or good quality, respectively. For each SNP with a

missing status, three proxy SNPs of differing quality (i.e., excellent, very good, good) were

obtained with SNAP from the 1000 Genomes Pilot 1 SNP dataset of the CEU sub-population

with a distance limit of 500 kb [20].

GRS performance evaluation. For all GRS, the OR for a one-standard-deviation increase

in the GRS was estimated as a measure of the GRS and phenotype association. The area under

the receiver operating curve (AUC) was estimated as a measure of the predictive ability of the

GRS for the phenotype (Fig 1).

Statistical analysis

The prevalence of the disease and GRS values were described in each scenario using means,

standard deviations, and minimum and maximum values. The impact of omitting or replacing

unavailable SNPs was assessed in each scenario by comparing the performance of the corre-

sponding gold standard GRS (using all original SNPs) with that of the four alternate GRS. We

first considered the distribution of Pearson correlations between the gold standard GRS and

the four alternate GRS from each of the 10 000 simulated datasets. Because of the left-skewed

distribution of correlations, the results were described using box plots. For each scenario, we

reported the median, 5th, 25th
, 75th, and 95th percentiles of the OR estimating the association

between the GRS and the phenotype. ORs were used to facilitate interpretation, but the esti-

mated regression coefficients can be obtained using a log transformation. To study the statisti-

cal power to detect a given OR at α = 0.05, we computed the percentage of p-value that were

Fig 1. Schematic overview of the algorithm used for simulation of weighted GRS.

https://doi.org/10.1371/journal.pone.0200630.g001
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<5% over all simulations. Similarly, we reported the median AUC to investigate the predictive

ability of the GRS. Simulations were performed using R version 3.3.1 and packages GenABEL

version 1.8–0, genetics version 1.3.8.1 and pROC version 1.9.1.

Results

Over all simulations, the mean (SD) prevalence of disease risk was 49.3% (4.4%) (minimum

26.7%, maximum 68.1%). The mean of the gold standard unweighted GRS was 26.95 (1.72)

(minimum 19.40, maximum 34.79). The mean of the gold standard weighted GRS was 2.44

(0.20) (minimum 1.65, maximum 3.24).

Impact on the GRS value

The correlations between the gold standard GRS and each alternate GRS over the 10 000 simu-

lations decreased when: (i) the proportion of unavailable SNPs increased, and (ii) when the

quality of proxy SNPs decreased (Fig 2). Independent of the proportion of unavailable SNPs,

the median correlation reported for GRS obtained after omission of unavailable SNPs was sim-

ilar for weighted and unweighted GRS. However, the wider interquartile range for weighted

GRS suggest greater variability than for unweighted GRS. When 20% of SNPs were unavail-

able, correlations with the gold standard GRS were all >0.8 for unweighted GRS; 84% of the

correlations for weighted GRS were>0.8 (S1 Table). At any given proportion of unavailable

SNPs, the median correlation was lower with omission than with the proxy approach, regard-

less of whether weights were used. Similarly, at any given proportion of missing SNPs and

holding the quality of proxy SNPs constant, the median correlation was higher in unweighted

compared to weighted GRS and the interquartile range was always wider for weighted GRS.

Fig 2. Impact of omission of the unavailable SNPs or replacement by proxy SNPs on the correlation between the GRS and gold standard GRS. Results for

unweighted GRS and weighted GRS correspond to different scenarios. The interpretation must be made separately and not contrast.

https://doi.org/10.1371/journal.pone.0200630.g002
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The relationship between the mean MAF of unavailable SNPs and the correlations between

the gold standard unweighted GRS and the estimated GRS are shown in S1 Fig. There was a

slight negative association between the mean MAF and the correlations. S2 Fig suggests that

the mean MAF of unavailable SNPs and the correlations between the gold standard weighted

GRS and the estimated GRS are not associated. However, stratifying the results by the avail-

ability of SNPs with the largest weights indicates a positive strong relationship between the

availability of the SNPs with the largest weights and the correlation between the gold standard

weighted GRS and the estimated GRS (S2 Table). Regardless of the proportion of unavailable

SNPs and the approach used, the median correlation was� 0.82 when the three SNPs with the

highest weights were available, and� 0.73 when they were unavailable.

Impact on effect size estimation

The left-hand side panels of Fig 3 show the estimated ORs as a function of the effect size

OR = exp(β) in Eq 1 for the genetic causal model for the unweighted gold standard GRS, for

the omission and proxy approaches when 20%, 30%, 50% and 70% of SNPs are missing.

Regardless of scenario or approach used, the estimated ORs were below the median OR of the

gold standard GRS. Specially, when the proportion of missing SNPs was 20%, the median OR

for each approach was between the 25th and 75th percentile of the OR of the gold standard

GRS. Underestimation increased with the proportion of unavailable SNPs and size of the

OR = exp(β) used to simulate the data, but remained very small when excellent proxy SNPs

were used. The median OR estimated using the proxy approach remained in the interquartile

range of the OR from the gold standard GRS when the proportion of unavailable SNPs was

<70% and the OR = exp(β) used to simulate the data was at its highest value (1.10).

With omission, the median estimated OR was outside the interquartile range of the OR esti-

mated with the gold standard GRS when the percentage of missing SNPs was�50% and the

OR = exp(β) was>1.06.

Fig 4 shows the estimated OR for a standard deviation increase in the weighted GRS as a

function of the percentage of unavailable SNPs when data were simulated using the weighted

gold standard GRS. Compared to omission, the proxy approach underestimates the OR to a

lesser extent. When 20% of SNPs were unavailable, the median OR estimated for all alternative

GRS was within the interquartile range of the gold standard GRS. When 40% of SNPs were

unavailable, the median ORs were all outside the interquartile range. Fig 5 illustrates how

underestimation is driven by unavailability of the three SNPs with the largest weights. When

these three SNPs were included in the GRS, the median ORs for the omission or proxy

approaches were within the interquartile range of the ORs estimated with the gold standard

GRS when�50% of SNPs were unavailable. When only one of the three SNPs was included,

independent of approach, median ORs were outside the interquartile range for all proportions

of unavailable SNPs studied. No association was observed between the mean MAF of unavail-

able SNPs and underestimation of the OR. Detailed statistics are available in S3 Table.

The statistical power to detect an association between the GRS and the phenotype decreased as

the number of omitted SNPs increased (Fig 6). A similar, yet attenuated trend was observed using

the proxy SNP approach. While Fig 6 suggests that the statistical power was consistently higher

for the weighted GRS than the unweighted GRS, it is a consequence of the values specified in the

genetic causal model used to simulate data. Indeed, the strength of the association between the

unweighted GRS and the phenotype was weaker than that of the weighted GRS, which adversely

affected statistical power. The median OR for the unweighted gold standard GRS ranged from

1.23 to 1.50 depending on the weights used in Eq 2. The median OR of the weighted gold standard

GRS, was larger (1.63) and resulted from using the weights reported in Tada et al [6].
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Impact on predictive ability

Investigations of the predictive ability of the weighted and unweighted GRS are reported in

Figs 3 and 4. Although the measurement scales differed, the results were identical to those

reported for the OR. This is a consequence of the mathematical relation between the log OR

and the AUC for a single predictor under the hypothesis of a normal distribution and the

homogeneity of variance of groups [27]. In this situation, the AUC is given by:

AUC ¼ �
s� b
ffiffiffi
2
p

� �

ð3Þ

where ϕ() is the standard normal cumulative distribution function, β is the log OR of

Fig 3. Impact of omission of the unavailable SNPs or replacement by proxy SNPs on effect size estimation and predictive ability of the unweighted

GRS for the phenotype.

https://doi.org/10.1371/journal.pone.0200630.g003

Fig 4. Impact of omission of the unavailable SNPs or replacement by proxy SNPs on effect size estimation and predictive ability of the weighted GRS for the

phenotype.

https://doi.org/10.1371/journal.pone.0200630.g004
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coefficient and σ is the common variance of groups. In addition, in such cases, the OR of a

standardised GRS directly reflects the AUC. Over all scenarios, the difference in the AUC cal-

culated for the median OR with this formula and the median AUC observed over all simula-

tions was less than 0.01.

Discussion

We undertook a simulation study to investigate the impact of either omitting or using proxy

SNPs to construct a GRS when some SNPs are unavailable. Compared to the proxy approach,

Fig 5. Impact of the unavailability of SNPs corresponding to extreme weights on effect size estimation and predictive ability of the weighted GRS for the

phenotype.

https://doi.org/10.1371/journal.pone.0200630.g005
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omission led to larger attenuation of the OR estimating the association between the GRS and

the phenotype, smaller predictive ability and more importantly loss of statistical power, even

when 70% of SNPs included in the GRS were replaced by proxy SNPs with modest correlation

with the unavailable SNPs (0.6< r2<0.8). In addition, we found that for GRS that include

larger-weight SNPs, predictive ability was driven by whether the SNPs with the largest weights

were available. Omitting SNPs with large weights can lead to severe decreases in predictive

ability.

Our results are consistent with those of Goldstein et al. [4] who described the performance

of large GRS when omitting imputed SNPs based on imputation quality threshold on the per-

formance of large GRS. They reported that omission resulted in attenuation of the relative risk,

which became more severe as the number of omitted SNPs increased. Although our findings

also suggest that omission leads to attenuation of the OR, they differ from those of Goldstein

et al in two ways. First, because Goldstein et al investigated GRS calculated from thousands of

SNPs, the impact of omitting a given number of SNPs seemed less severe than in our study for

which the number of missing SNPs was a large proportion of the number of SNPs considered.

Second, because SNPs were omitted based on the quality of imputation, the effects of omission

and quality of imputation could not be disentangled. Our findings suggest that using proxy

SNPs led to less severe attenuation of the OR, regardless of the quality of proxy considered.

Unlike our study, Goldstein et al reported that omitting SNPs did not have an impact on

the predictive ability of the GRS [4]. However, the AUC reported in Goldstein et al was based

on models including both the GRS and clinical risk factors for the phenotype (i.e., coronary

heart disease (CHD)). These clinical factors, which corresponded to those used in the Fra-

mingham risk score, are known to predict a large proportion of the variation in risk of CHD,

with estimates for the AUC ranging from 0.74 in men to 0.77 women [28]. Thus, the genetic

contribution to CHD risk in Goldstein et al’s study was relatively small and prevented detec-

tion of large changes in the AUC. Because our models did not include any variables other than

Fig 6. Impact of omission of unavailable SNPs or replacement by proxy SNPs on statistical power to detect the effect size of the weighted GRS for the phenotype.

https://doi.org/10.1371/journal.pone.0200630.g006
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the GRS, we were able to isolate the effect of omitting SNPs or using proxy SNPs on the perfor-

mance of the GRS to predict our simulated outcome using the mathematical relationship

between the AUC and the OR from univariate logistic models [27].

Regardless of approach used to manage missing SNPs, we observed a slight inverse relation-

ship between the mean MAFs for unavailable SNPs and the correlations between the gold stan-

dard GRS and the estimated GRSs. When unavailable SNPs have a small mean MAF, the

variance of the number of risk alleles corresponding to the unavailable SNPs is also small.

Therefore, the contribution of unavailable SNPs to the gold standard GRS is low, and omitting

or replacing them by proxy SNPs has little impact on the GRS.

Strengths of this analysis include the use of real genetic data and a reference panel matched

for ethnicity. Because we did not consider other variables than the GRS in our models, our

simulations quantified the impact of the omission and proxy approaches on statistical power

and predictive ability of the GRS to predict a binary phenotype. Investigating the proxy and

omission approaches separately allowed us to distinguish the effect of omitting a SNP from

that of replacing it with a proxy SNP.

Limitations of this study include using a GRS with a fixed number of SNPs and only one set

of weights in the weighted GRS. Moreover, we used the same weights to generate data from

the causal model and to calculate the GRS in each simulated dataset. This is akin to assuming

that the weights derived from a discovery sample are the true weights and no error term is

included in the data generation. While this is a restrictive assumption, it allowed us to isolate

the effect of unavailable SNPs from that of precision in the weights estimation. While we

restricted our study to SNPs with MAF� 5%, our results suggest that unavailable SNPs with

small MAFs should not have a large impact on the GRS value. Finally, while we did not con-

sider imputation as a method to manage omitted SNPs, we expect that our results pertaining

the proxy SNP approach likely apply to imputed SNPs as well because assessing the quality of

proxy SNPs is very similar to that of the quality of imputation. Future studies will need to con-

firm this hypothesis.

Conclusions

Our study has three practical implications. First, our results suggest that it is generally better to

replace unavailable SNPs with proxy SNPs than to omit them from the GRS, particularly when

the GRS does not include a very large number of SNPs (as in Goldstein et al.). Second, close

attention must be paid to missing SNPs that have relatively high weights in weighted GRS, as

failure to use proxy SNPs may significantly impact the performance of the GRS. Third, our

results highlight the importance of reporting the number of SNPs that are unavailable when a

GRS is computed, as well as the method used to account for the unavailable SNPs. Otherwise,

poor performances of GRS that omit several SNPs could be wrongly attributed to failures to

replicate the GRS in populations independent from the initial discovery samples.
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